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1 Introduction

In the evolving landscape of artificial intelligence and cybersecurity, a particularly concerning threat

has emerged at the intersection of theoretical research and practical application: realizable attacks.

Unlike purely theoretical adversarial attacks that may work only in controlled laboratory conditions,

realizable attacks—also known as problem-space attacks—successfully bridge the gap between digital

vulnerabilities and physical reality, creating tangible threats to AI systems deployed in the real world.

Realizable attacks represent a sophisticated evolution in the adversarial machine learning field. They

go beyond simply fooling a model within a digital environment to creating adversarial examples that

remain effective when implemented in real-world contexts, accounting for physical constraints, environ-

mental variables, and system preprocessing. As Pierazzi et al. (2020) articulate in their seminal work,

“Realizable attacks require the adversary to reason about the inverse feature-mapping problem: how to

modify objects in the problem space so that their feature space representation changes in a way that

induces misclassification.”

The significance of these attacks extends far beyond academic interest. As AI systems increasingly

control critical infrastructure and decision-making processes, the ability to manipulate these systems

in real-world settings poses serious risks to public safety, privacy, and security. Self-driving vehicles

could misinterpret traffic signs with subtle modifications, biometric authentication systems might fail to

distinguish between legitimate users and attackers using specially crafted inputs, and fraud detection

systems could be rendered ineffective against transactions specifically designed to appear legitimate while

concealing fraudulent activity.

The danger is particularly acute because many organizations deploy AI models with strong perfor-

mance in controlled settings but insufficient testing against adversarial inputs that account for real-world

constraints and implementation factors. This gap between theoretical and practical security creates a

vulnerability landscape that sophisticated attackers can exploit with potentially severe consequences.

2 Understanding Realizable Attacks

Realizable attacks distinguish themselves from theoretical adversarial attacks by accounting for the

practical constraints of the real world. While a theoretical attack might suggest pixel-level changes to

an image that would fool an AI classifier, a realizable attack must consider whether those changes can

be implemented in a physical object or environment and still retain their effectiveness when captured by

sensors, processed by various algorithms, and finally analyzed by the target model.

As Cavallaro and De Cristofaro (2023) explain in the Security and Privacy of AI Knowledge Guide,

“Realizable attacks are a category of adversarial attacks that focus on creating real adversarial objects.”

They emphasize that “for instance, in malware classification tasks, realizable adversarial attacks are not
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just concerned at creating digital adversarial examples...but also focused at generating an adversarial

object that exists in the physical world.”

The key difference lies in what security researchers call the “problem space” versus the “feature space.”

The problem space encompasses the actual physical or digital objects (such as images, malware code,

or audio signals) as they exist in reality. The feature space, by contrast, represents the mathematical

abstraction of these objects that machine learning models operate on. Realizable attacks must work

within the constraints of the problem space while achieving the desired effect in the feature space.

Consider a facial recognition system used for secure access. A theoretical attack might suggest specific

pixel modifications to a photograph to fool the system. However, a realizable attack needs to consider:

1. How to translate those pixel modifications into physical changes (makeup, accessories, lighting

conditions)

2. Whether those physical changes will be captured consistently by cameras in different lighting and

angles

3. If preprocessing steps like normalization or alignment might neutralize the attack

4. Whether the attack remains effective after compression or transmission through the system

Real-world examples highlight these challenges. In autonomous driving contexts, attackers have

demonstrated that physical modifications to road signs—such as strategically placed stickers—can cause

vision systems to misclassify them entirely. Similarly, researchers have shown how specially designed

eyeglass frames can defeat facial recognition systems consistently in the real world, despite variable

lighting, angles, and distances (Sharif et al., 2016).

3 How Realizable Attacks Work

The technical mechanisms behind realizable attacks involve sophisticated understanding of both AI

systems and the physical world. Several key approaches characterize how these attacks operate:

3.1 Adversarial Perturbations with Real-World Constraints

Realizable attacks typically begin with traditional adversarial perturbations—carefully calculated mod-

ifications to inputs that cause AI systems to make incorrect predictions. However, they add a crucial

layer of constraint: the perturbations must be implementable in the physical world.

For example, when creating an adversarial attack against an image recognition system, the attacker

must consider:

• Physical realizability: Changes must be physically implementable (e.g., using stickers, paint, or

lighting)

• Environmental invariance: The attack should work across different lighting conditions, angles,

and distances

• Transformation robustness: The attack should remain effective after the physical object is

captured by sensors and processed by the system

As noted by Eykholt et al. (2018) in their work on robust physical-world attacks on deep learning vi-

sual classification, “Perturbations are usually measured with Lp norms, but these mathematical distance

metrics may not represent actual concern for safety-critical systems.” They emphasize that physical

realizability requires optimizing for “non-suspiciousness and robustness to environmental conditions.”
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3.2 Side-Effect Features and Semantic Preservation

A critical aspect of realizable attacks is managing what researchers call “side-effect features.” When

making changes to objects in the real world, those modifications often have unintended consequences or

side effects on other features that the model might analyze.

For instance, when modifying malware to evade detection, simply changing certain byte sequences

might render the malware non-functional. A realizable attack must therefore maintain the semantic

functionality of the malware while altering its feature representation enough to evade detection. Similarly,

physical modifications to objects must preserve their original purpose and appearance to humans while

fooling machines.

Pierazzi et al. (2020) describe this challenge: “Projecting adversarial points from the feature space

back to the problem space introduces side-effect features as a byproduct of satisfying problem space

constraints.” They note that these side-effect features “exist to make the attack realistic, as they facilitate

adherence to the inherent constraints of the problem space.”

3.3 Transformation-Aware Optimization

Realizable attacks must account for the various transformations that occur when physical objects are

processed by computational systems. This includes:

1. Sensor variability: Different cameras, microphones, or sensors might capture the same physical

object differently

2. Preprocessing algorithms: Systems often normalize, crop, or filter inputs before analysis

3. Feature extraction: The conversion from raw sensory data to feature vectors can affect attack

success

Sophisticated realizable attacks therefore use transformation-aware optimization techniques, often

involving end-to-end simulations of the entire pipeline from physical object to final classification. The

attacker optimizes the perturbation not just for a single digital input but for robustness across the entire

process chain.

For example, when attacking facial recognition, researchers might simulate different camera angles,

lighting conditions, and preprocessing steps to ensure their physical adversarial examples (like specially

designed glasses) work consistently in varied real-world conditions.

4 Categories of Realizable Attacks

Realizable attacks span multiple domains and techniques, each tailored to specific AI applications and

their real-world deployment contexts.

4.1 Physical Adversarial Examples

Physical adversarial examples represent perhaps the most intuitive category of realizable attacks. These

involve creating physical objects specifically designed to fool AI classifiers. Notable examples include:

• Traffic sign attacks: Researchers have demonstrated how carefully placed stickers on stop signs

can cause them to be misclassified as speed limit signs by autonomous vehicle vision systems

(Eykholt et al., 2018).
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• 3D printed objects: Specially designed 3D objects can be consistently misclassified regardless of

viewing angle or lighting conditions.

• Adversarial patches: Wearable patches or stickers that can cause person detection systems to

fail to recognize humans in the scene.

The key challenge in this category is creating modifications that remain effective across different

distances, angles, and lighting conditions—all while appearing inconspicuous to humans.

4.2 Transformation-Robust Digital Attacks

These attacks target digital systems but account for real-world preprocessing and transformation steps.

Examples include:

• Robust audio adversarial examples: Audio commands designed to control voice assistants even

after being played through speakers and captured by microphones, potentially with background

noise.

• Camera-robust adversarial images: Digital images crafted to remain adversarial even after

being displayed on screens, captured by cameras, and processed by computer vision systems.

These attacks must account for quality loss, format conversion, and various transformations that

occur in real-world digital pipelines.

4.3 Sensor-Based Attacks

Sensor-based attacks specifically target the sensing mechanisms that AI systems use to perceive the

world. Examples include:

• LiDAR spoofing: Creating false returns in autonomous vehicle LiDAR sensors to generate phan-

tom obstacles.

• Microphone jamming: Using ultrasonic signals to inject inaudible commands into voice recog-

nition systems.

• Camera blinding: Using precisely timed light pulses to temporarily blind camera-based systems

at critical moments.

These attacks exploit physical properties of sensors rather than just the machine learning models

that process their data.

4.4 Semantically Constrained Attacks

These attacks operate in domains where the adversarial inputs must maintain specific semantic properties

to remain functional. Examples include:

• Functional malware: Malware that evades detection while preserving its malicious functionality.

• Adversarial text: Text that maintains grammatical correctness and semantic meaning to humans

but causes NLP systems to make incorrect classifications.

• Executable adversarial examples: Code modifications that preserve program behavior while

evading analysis tools.

These attacks are particularly challenging as they must balance the competing objectives of evading

detection and maintaining functionality.
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5 Where & When Realizable Attacks Are Used

Realizable attacks find application across numerous domains where AI systems interface with the physical

world or must process inputs from potentially adversarial sources.

5.1 Autonomous Vehicle Security

Self-driving vehicles represent a prime target for realizable attacks due to their reliance on various sensors

and AI vision systems for critical safety decisions. Attackers could potentially:

• Modify road signs with carefully placed stickers to cause misclassification

• Create adversarial patterns on vehicles or buildings that make them invisible to object detection

systems

• Deploy physical objects designed to be misclassified as different objects (e.g., making a stop sign

appear as a yield sign)

As noted by Moreno-Torres et al. (2012), “These attacks are particularly dangerous because they can

cause systems to make incorrect decisions in safety-critical scenarios.” The consequences could range

from unauthorized access to restricted areas to potentially catastrophic accidents.

5.2 Biometric Security Circumvention

Biometric authentication systems increasingly rely on AI for facial recognition, fingerprint matching, and

voice identification. Realizable attacks in this domain include:

• Creating physical masks or accessories that fool facial recognition into identifying the attacker as

an authorized user

• Developing artificial fingerprints that match specific individuals

• Synthesizing voice samples that bypass voice recognition authentication

These attacks are particularly concerning because biometric systems are increasingly used for high-

security applications like banking, border control, and facility access.

5.3 Evading AI-Powered Threat Detection

In cybersecurity, numerous tools now employ AI to detect malware, phishing attempts, and intrusions.

Realizable attacks in this context include:

• Creating malware that maintains its functionality while evading AI-based detection

• Designing phishing websites that appear legitimate to both humans and AI safety tools

• Crafting network traffic patterns that avoid triggering anomaly detection systems

These attacks directly undermine security infrastructure designed to protect organizations and indi-

viduals from cyber threats.
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5.4 Manipulating Financial and Fraud Detection Systems

Financial institutions heavily rely on AI to detect fraudulent transactions and suspicious activities.

Attackers can design realizable attacks that:

• Structure financial transactions to avoid triggering fraud detection algorithms

• Create fake documents that pass automated verification systems

• Generate synthetic identities that appear legitimate to KYC (Know Your Customer) AI systems

The financial incentives for such attacks are substantial, making this an active area for both attackers

and defenders.

6 Real-World Case Studies

6.1 Case Study 1: The Turtle Mistaken for a Rifle

In 2019, researchers from MIT demonstrated a striking example of a realizable attack by 3D-printing a

turtle with a specific texture pattern. When viewed by advanced object recognition systems, the turtle

was consistently misclassified as a rifle, regardless of the viewing angle or lighting conditions (Athalye

et al., 2018).

This case highlighted several critical insights:

1. Physical robustness: The attack remained effective across various physical transformations,

including rotation, lighting changes, and different viewpoints.

2. Inconspicuousness: To humans, the object clearly looked like a turtle, with the adversarial

pattern appearing merely as an interesting texture.

3. Transferability: The attack worked against multiple different vision models, not just the one it

was optimized for.

The implications were significant—demonstrating that physical objects could be manufactured specif-

ically to fool AI systems consistently in real-world conditions. This raised concerns about how such

techniques might be used to evade security systems or fool autonomous vehicles.

6.2 Case Study 2: Evading Face Recognition with Adversarial Eyeglasses

Sharif et al. (2016) demonstrated a particularly concerning realizable attack against facial recognition

systems. They created specially designed eyeglass frames that, when worn, could cause the wearer to be

misidentified as someone else or to evade identification altogether.

The attack involved:

1. Printing the eyeglass frames with a precisely calculated pattern

2. Testing across different lighting conditions and camera angles

3. Ensuring the attack remained effective despite various preprocessing steps in facial recognition

systems

The researchers achieved up to 100% success rates in targeted impersonation attacks against state-

of-the-art facial recognition systems. What made this attack particularly notable was:

6



• Practicality: The eyeglasses could be easily manufactured and worn

• Inconspicuousness: They appeared as normal fashion accessories

• Effectiveness: They worked consistently in real-world conditions

• Specificity: They could target impersonation of specific individuals

This demonstration raised serious concerns about the security of facial recognition systems used for

access control and surveillance, showing how physical accessories could fundamentally undermine their

reliability.

7 Defensive Strategies Against Realizable Attacks

As the threat of realizable attacks grows, researchers and organizations have developed various defensive

strategies to enhance AI system robustness against these sophisticated attacks.

7.1 Robust Data Augmentation and Training

One of the most effective approaches involves training AI systems on data that reflects real-world varia-

tions and potential adversarial manipulations:

• Adversarial training: Intentionally including adversarial examples in training data

• Domain randomization: Training models with highly varied backgrounds, lighting, and per-

spectives

• Physical transformation simulation: Incorporating simulations of real-world physical trans-

formations (rotation, lighting changes, sensor noise) during training

As demonstrated by RealizableAttack (2023) in their implementation: “With data augmentation,

the model learns to recognize digits across various transforms, making it more robust against realizable

adversarial attacks that use similar transformations.”

7.2 Multi-sensor Fusion and Cross-Validation

Systems that rely on multiple independent sensors and cross-validate their inputs are significantly harder

to attack:

• Sensor diversity: Using different types of sensors (cameras, LiDAR, radar, infrared) to perceive

the same environment

• Cross-validation: Requiring consistent object recognition across multiple sensing modalities

• Temporal consistency checking: Verifying that detections remain consistent over time

When one sensor type might be vulnerable to a particular attack, others with different physical

properties may remain unaffected, providing a defense-in-depth approach.
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7.3 Anomaly Detection for Adversarial Inputs

Specialized systems can be deployed to detect inputs that have characteristics of adversarial examples:

• Statistical analysis: Flagging inputs with unusual statistical properties

• Perturbation detection: Identifying patterns characteristic of adversarial perturbations

• Out-of-distribution detection: Recognizing inputs that differ significantly from typical exam-

ples

As noted by Carlini and Wagner (2017), “Detecting adversarial examples is a promising approach to

defend against attacks, but detectors must be robust to adaptive attackers who know about the detection

mechanism.”

7.4 Security by Design in AI Systems

Fundamentally secure AI deployment requires considering security throughout the design process:

• Interpretable models: Using models that provide explanations for their decisions, making it

easier to identify suspicious inputs

• Formal verification: Mathematically proving properties about model behavior under certain

conditions

• Secure model deployment: Implementing secure update mechanisms, monitoring, and response

protocols

Organizations should incorporate adversarial testing into their development lifecycle, regularly testing

systems against state-of-the-art realizable attacks.

8 Conclusion

Realizable attacks represent a crucial evolution in the field of adversarial machine learning—bridging

the gap between theoretical vulnerabilities and practical exploits. As AI systems increasingly make

critical decisions in our physical world, the ability of attackers to craft inputs that function effectively in

real-world conditions poses significant security, safety, and privacy concerns.

The technical sophistication of these attacks continues to grow, with researchers and malicious actors

developing increasingly robust methods to fool AI systems while accounting for real-world constraints.

From traffic signs modified to mislead autonomous vehicles to accessories designed to defeat facial recog-

nition, these attacks exploit the fundamental gap between the simplified mathematical representations

used by AI systems and the complex, noisy reality they attempt to interpret.

Defending against such attacks requires a multi-faceted approach. Organizations must combine robust

training techniques, diverse sensing modalities, anomaly detection, and security-by-design principles to

create AI systems resistant to realizable attacks. Equally important is acknowledging that perfect security

is unattainable—continuous testing, monitoring, and improvement are essential in the face of evolving

threats.

As we continue to integrate AI into critical infrastructure and decision-making processes, understand-

ing and addressing realizable attacks becomes not merely an academic exercise but a practical necessity

for responsible deployment. The challenge for security professionals and AI developers is clear: design

systems that maintain their integrity even when faced with carefully crafted inputs specifically designed

to manipulate them in the messy, complex reality of the physical world.
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